Background/Objectives: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the BCR–ABL fusion gene, whose constitutive tyrosine kinase activity drives leukemogenesis. Although tyrosine kinase inhibitors (TKIs) have revolutionized treatment, drug resistance and leukemic stem cell persistence remain major challenges. Natural compounds such as polyphenols have shown potential in modulating key oncogenic pathways in CML. Results: Polyphenols such as resveratrol, quercetin, curcumin, and epigallocatechin gallate (EGCG) demonstrated significant antiproliferative and pro-apoptotic effects in CML cell lines, including imatinib-resistant models. These effects were mediated through the modulation of signaling pathways, including PI3K/Akt, STAT5, and MAPK; inhibition of BCR–ABL expression; induction of oxidative stress; and the enhancement of apoptosis via mitochondrial and caspase-dependent mechanisms. Some polyphenols also showed synergistic activity with TKIs, potentiating their efficacy and overcoming resistance. Conclusions: Preclinical evidence supports the role of polyphenols as potential adjuvants in CML therapy, particularly in drug-resistant contexts. Their pleiotropic molecular actions and low toxicity profile make them promising candidates for integrative oncology. Nonetheless, clinical translation requires further investigation through well-designed trials assessing efficacy, safety, and pharmacokinetics.

Polyphenols and Chronic Myeloid Leukemia: Emerging Therapeutic Opportunities

D’Angelo, Stefania
Funding Acquisition
;
Perrone, Pasquale.
Conceptualization
2025-01-01

Abstract

Background/Objectives: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the BCR–ABL fusion gene, whose constitutive tyrosine kinase activity drives leukemogenesis. Although tyrosine kinase inhibitors (TKIs) have revolutionized treatment, drug resistance and leukemic stem cell persistence remain major challenges. Natural compounds such as polyphenols have shown potential in modulating key oncogenic pathways in CML. Results: Polyphenols such as resveratrol, quercetin, curcumin, and epigallocatechin gallate (EGCG) demonstrated significant antiproliferative and pro-apoptotic effects in CML cell lines, including imatinib-resistant models. These effects were mediated through the modulation of signaling pathways, including PI3K/Akt, STAT5, and MAPK; inhibition of BCR–ABL expression; induction of oxidative stress; and the enhancement of apoptosis via mitochondrial and caspase-dependent mechanisms. Some polyphenols also showed synergistic activity with TKIs, potentiating their efficacy and overcoming resistance. Conclusions: Preclinical evidence supports the role of polyphenols as potential adjuvants in CML therapy, particularly in drug-resistant contexts. Their pleiotropic molecular actions and low toxicity profile make them promising candidates for integrative oncology. Nonetheless, clinical translation requires further investigation through well-designed trials assessing efficacy, safety, and pharmacokinetics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/148798
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact