Purpose: Theadvanced air mobility (AAM) is defined by National Aeronautics and Space Administration (NASA) as safe, accessible, automated and affordable air transportation system for passengers and cargo, capable of serving previously hard-to-reach urban and rural sites. The purpose of this paper is to focus on explaining potential solutions, under study by the authors, which could support beyond visual line of sight (BVLOS) operations for goods delivery in a safe way. Design/methodology/approach: According to recent NASA-commissioned market studies, by 2030, there will be as many as 500 million flights a year for package delivery services and 750 million flights a year for passengers’ transportation (AAM). A significant number of these aircrafts will be unmanned aerial vehicles, meaning that they are self-flying or autonomous, of which the smallest ones are quadcopters: they are relatively inexpensive and are capable to perform various tasks, such as aerial observation, crop monitoring and treatment, search and rescue, power line monitoring and goods delivery. On the other hand, there are still many difficulties in introducing them into medium- and low-risk BVLOS routine operations for goods delivery: unfortunately, there are no regulations and technologies yet that enable these operations. Findings: This conceptual paper outlines the studies about possible solutions, identified by authors, which could support BVLOS operations in a medium- and low-risk environment; in particular, the following aspects have been analysed: regulations, integrating control systems for drones, sensors (on board obstacle detection and avoidance), emergency management (emergency on ground system to identify safe landing areas), concepts of droneway (or flight corridors) and drones recovery hub. Originality/value: The purpose of this paper is to provide a conceptual description of the possible solutions, under study by the authors, which could contribute enabling the BVLOS operations in a medium- and low-risk environment. The paper aims describing the state of the art, terms of regulations, classifications and limitations and describing possible conceptual solutions that could guarantee safety in introducing unmanned aircraft system operations inside urban areas.

AAM/goods delivery: main enablers for BVLOS routine operations within environment at low and medium risk

Menichino, Aniello;Ariante, Gennaro;Del Core, Giuseppe
2023-01-01

Abstract

Purpose: Theadvanced air mobility (AAM) is defined by National Aeronautics and Space Administration (NASA) as safe, accessible, automated and affordable air transportation system for passengers and cargo, capable of serving previously hard-to-reach urban and rural sites. The purpose of this paper is to focus on explaining potential solutions, under study by the authors, which could support beyond visual line of sight (BVLOS) operations for goods delivery in a safe way. Design/methodology/approach: According to recent NASA-commissioned market studies, by 2030, there will be as many as 500 million flights a year for package delivery services and 750 million flights a year for passengers’ transportation (AAM). A significant number of these aircrafts will be unmanned aerial vehicles, meaning that they are self-flying or autonomous, of which the smallest ones are quadcopters: they are relatively inexpensive and are capable to perform various tasks, such as aerial observation, crop monitoring and treatment, search and rescue, power line monitoring and goods delivery. On the other hand, there are still many difficulties in introducing them into medium- and low-risk BVLOS routine operations for goods delivery: unfortunately, there are no regulations and technologies yet that enable these operations. Findings: This conceptual paper outlines the studies about possible solutions, identified by authors, which could support BVLOS operations in a medium- and low-risk environment; in particular, the following aspects have been analysed: regulations, integrating control systems for drones, sensors (on board obstacle detection and avoidance), emergency management (emergency on ground system to identify safe landing areas), concepts of droneway (or flight corridors) and drones recovery hub. Originality/value: The purpose of this paper is to provide a conceptual description of the possible solutions, under study by the authors, which could contribute enabling the BVLOS operations in a medium- and low-risk environment. The paper aims describing the state of the art, terms of regulations, classifications and limitations and describing possible conceptual solutions that could guarantee safety in introducing unmanned aircraft system operations inside urban areas.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/130680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact