In this study, we explored the ability of Annurca apple flesh polyphenol extract (AFPE) to affect the activity of key enzymes involved in neurodegenerative disorders—in particular, Acetyl- and Butirryl-cholinesterases, and type A and B monoamine oxidase. The effect of AFPE on enzyme activity was analyzed by in vitro enzyme assays, and the results showed concentration-dependent enzyme inhibition, with IC50 values corresponding to 859 ± 18 µM and 966 ± 72 µM for AChE and BuChE respectively, and IC50 corresponding to 145 ± 3 µM and 199 ± 7 µM for MAO-A and MAO-B, respectively, with a preference for MAO-A. Moreover, in this concentration range, AFPE did not affect the viability of human neuroblastoma SH-SY5Y and fibroblast BJ-5ta cell lines, as determined by an MTT assay. In conclusion, our results demonstrate that AFPE shows the new biological properties of inhibiting the activity of enzymes that are involved in brain functions, neurodegenerative disorders, and aging

Annurca Apple Polyphenol Extract Affects Acetyl- Cholinesterase and Mono-Amine Oxidase In Vitro Enzyme Activity

Nasso, Rosarita;Pagliara, Valentina;D’Angelo, Stefania;Masullo, Mariorosario
;
Arcone, Rosaria
2021

Abstract

In this study, we explored the ability of Annurca apple flesh polyphenol extract (AFPE) to affect the activity of key enzymes involved in neurodegenerative disorders—in particular, Acetyl- and Butirryl-cholinesterases, and type A and B monoamine oxidase. The effect of AFPE on enzyme activity was analyzed by in vitro enzyme assays, and the results showed concentration-dependent enzyme inhibition, with IC50 values corresponding to 859 ± 18 µM and 966 ± 72 µM for AChE and BuChE respectively, and IC50 corresponding to 145 ± 3 µM and 199 ± 7 µM for MAO-A and MAO-B, respectively, with a preference for MAO-A. Moreover, in this concentration range, AFPE did not affect the viability of human neuroblastoma SH-SY5Y and fibroblast BJ-5ta cell lines, as determined by an MTT assay. In conclusion, our results demonstrate that AFPE shows the new biological properties of inhibiting the activity of enzymes that are involved in brain functions, neurodegenerative disorders, and aging
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/90071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact