We present a quantitative evaluation of Matrioska, a novel framework for the detection and tracking in real-time of unknown object in a video stream, on the LTDT2014 dataset that includes six sequences for the evaluation of single-object long-term visual trackers. Matrioska follows the approach of tracking by detection: the detector localizes the target object in each frame, using multiple keypoint-based methods. To account for appearance changes, the learning module updates both the target object and background model with a growing and pruning approach
The matrioska tracking algorithm on LTDT2014 dataset
PETROSINO, Alfredo
2014-01-01
Abstract
We present a quantitative evaluation of Matrioska, a novel framework for the detection and tracking in real-time of unknown object in a video stream, on the LTDT2014 dataset that includes six sequences for the evaluation of single-object long-term visual trackers. Matrioska follows the approach of tracking by detection: the detector localizes the target object in each frame, using multiple keypoint-based methods. To account for appearance changes, the learning module updates both the target object and background model with a growing and pruning approachFile in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.