The northern Adriatic Sea (NA) is affected by strong anthropogenic pressure, superimposed to a large river runoff. The consequent pressure exerted on the NA ecosystem either triggers or worsens negative phenomena like anoxic/hypoxic events. During the summer-autumn period, the NA is often exposed to these events, which can be categorised as either coastal (relatively frequent south of the Po River delta during the summer) and offshore (rare, affecting wider areas). An operational system for monitoring and forecasting anoxic/hypoxic events has been set up in the framework of the EU LIFE “EMMA” project. The system is composed of a meteo-oceanographic buoy; a numerical prediction system based on the Regional Ocean Modelling System (ROMS), including a Fashamtype module for biogeochemical fluxes; and oceanographic surveys. Every day since June 2007, the system provides 3-hourly forecasts of marine currents, thermohaline and biogeochemical fields for the incoming three days. The system demonstrated its ability to produce accurate temperature forecasts and relatively good salinity and dissolved oxygen forecasts. The Root Mean Square Error of the dissolved oxygen forecast was largely due to the mean bias. The system is currently being improved to include a better representation of benthic layer biogeochemical processes and several adjustments of the model. While developing model improvements, dissolved oxygen forecasts were improved with the removal of the 10-day mean bias.
Operational observing and forecasting system for dissolved oxygen and environmental parameters in the Northern Adriatic Sea
IERMANO, ILARIA;
2011-01-01
Abstract
The northern Adriatic Sea (NA) is affected by strong anthropogenic pressure, superimposed to a large river runoff. The consequent pressure exerted on the NA ecosystem either triggers or worsens negative phenomena like anoxic/hypoxic events. During the summer-autumn period, the NA is often exposed to these events, which can be categorised as either coastal (relatively frequent south of the Po River delta during the summer) and offshore (rare, affecting wider areas). An operational system for monitoring and forecasting anoxic/hypoxic events has been set up in the framework of the EU LIFE “EMMA” project. The system is composed of a meteo-oceanographic buoy; a numerical prediction system based on the Regional Ocean Modelling System (ROMS), including a Fashamtype module for biogeochemical fluxes; and oceanographic surveys. Every day since June 2007, the system provides 3-hourly forecasts of marine currents, thermohaline and biogeochemical fields for the incoming three days. The system demonstrated its ability to produce accurate temperature forecasts and relatively good salinity and dissolved oxygen forecasts. The Root Mean Square Error of the dissolved oxygen forecast was largely due to the mean bias. The system is currently being improved to include a better representation of benthic layer biogeochemical processes and several adjustments of the model. While developing model improvements, dissolved oxygen forecasts were improved with the removal of the 10-day mean bias.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.