This paper presents a detailed analysis of the formation and subsequent evolution of filament-like structures observed in a relatively small area of the mid-Tyrrhenian Sea (Mediterranean Sea). The filament dynamics and potential impact on the cross-shelf exchange budget are investigated based on a combined use of remote sensing imagery, in situ data and numerical modelling. The complexity of these phenomena is shown by focusing on four distinct events that led to cross-shelf transport, each representative of a different dynamic process and a distinct expected impact on the coastal area. A systematic analysis of available observations for the years 1998–2006 underlines the role of the interplay of atmospheric freshwater fluxes, river loads and wind stress variations, which may create favourable conditions for the convergence of shelf waters (particularly at coastal capes) and the subsequent formation of short-lived filaments along the coast. The response of the buoyant coastal waters to periods of wind reversal and fluctuating freshwater discharge rates is examined through idealised Regional Ocean Modeling System (ROMS) simulations. The filaments observed in remote sensing imagery were well reproduced by the numerical exercise, where the filaments appear as organised submesoscale structures that possess high relative vorticity and develop at the river mouths or adjacent capes. In both scenarios, the filaments appear largely determined by (i) the presence of a buoyancy anomaly, (ii) the angle between the wind pulse direction and the coast and (iii) irregularities in the coastal profile. The ensemble of results suggests that the occurrence of such transient, intense structures may contribute considerably to the biological variability and cross-shelf exchange in coastal areas with similar traits.

Filament formation and evolution in buoyant coastal waters: Observation and modelling

IERMANO, ILARIA;
2012-01-01

Abstract

This paper presents a detailed analysis of the formation and subsequent evolution of filament-like structures observed in a relatively small area of the mid-Tyrrhenian Sea (Mediterranean Sea). The filament dynamics and potential impact on the cross-shelf exchange budget are investigated based on a combined use of remote sensing imagery, in situ data and numerical modelling. The complexity of these phenomena is shown by focusing on four distinct events that led to cross-shelf transport, each representative of a different dynamic process and a distinct expected impact on the coastal area. A systematic analysis of available observations for the years 1998–2006 underlines the role of the interplay of atmospheric freshwater fluxes, river loads and wind stress variations, which may create favourable conditions for the convergence of shelf waters (particularly at coastal capes) and the subsequent formation of short-lived filaments along the coast. The response of the buoyant coastal waters to periods of wind reversal and fluctuating freshwater discharge rates is examined through idealised Regional Ocean Modeling System (ROMS) simulations. The filaments observed in remote sensing imagery were well reproduced by the numerical exercise, where the filaments appear as organised submesoscale structures that possess high relative vorticity and develop at the river mouths or adjacent capes. In both scenarios, the filaments appear largely determined by (i) the presence of a buoyancy anomaly, (ii) the angle between the wind pulse direction and the coast and (iii) irregularities in the coastal profile. The ensemble of results suggests that the occurrence of such transient, intense structures may contribute considerably to the biological variability and cross-shelf exchange in coastal areas with similar traits.
File in questo prodotto:
File Dimensione Formato  
Iermano_etal2012po.pdf

non disponibili

Licenza: DRM non definito
Dimensione 6.65 MB
Formato Adobe PDF
6.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/34753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 36
social impact