We propose the 3dSOBS+ algorithm, a newly designed approach for moving object detection based on a neural background model automatically generated by a self-organizing method. The algorithm is able to accurately handle scenes containing moving backgrounds, gradual illumination variations, and shadows cast by moving objects, and is robust against false detections for different types of videos taken with stationary cameras. Experimental results and comparisons conducted on the Background Models Challenge benchmark dataset demonstrate the improvements achieved by the proposed algorithm, that compares well with the state-of-the-art methods.

The 3dSOBS+ algorithm for moving object detection

MADDALENA, LUCIA;PETROSINO, Alfredo
2014

Abstract

We propose the 3dSOBS+ algorithm, a newly designed approach for moving object detection based on a neural background model automatically generated by a self-organizing method. The algorithm is able to accurately handle scenes containing moving backgrounds, gradual illumination variations, and shadows cast by moving objects, and is robust against false detections for different types of videos taken with stationary cameras. Experimental results and comparisons conducted on the Background Models Challenge benchmark dataset demonstrate the improvements achieved by the proposed algorithm, that compares well with the state-of-the-art methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/32298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 51
social impact