Aim of this work is to introduce a methodology, based on the combination of multiple temporal hierarchical agglomerations, for model comparisons in a multi-model ensemble context. We take advantage of a mechanism in which hierarchical agglomerations can easily combined by using a transitive consensus matrix. The hierarchical agglomerations make use of fuzzy similarity relations based on a generalized Lukasiewicz structure. The methodology is used to analyze data from a multi-model air quality ensemble system. The models are operational long-range transport and dispersion models used for the real-time simulation of pollutant dispersion or the accidental release of radioactive nuclides in the atmosphere. We apply the described methodology to agglomerate and to individuate the models that characterize the predicted atmospheric pollutants from the ETEX-1 experiment.

Comparison of Dispersion Models by Using Fuzzy Similarity Relations

CIARAMELLA, Angelo;RICCIO, Angelo;GIUNTA, Giulio;
2011

Abstract

Aim of this work is to introduce a methodology, based on the combination of multiple temporal hierarchical agglomerations, for model comparisons in a multi-model ensemble context. We take advantage of a mechanism in which hierarchical agglomerations can easily combined by using a transitive consensus matrix. The hierarchical agglomerations make use of fuzzy similarity relations based on a generalized Lukasiewicz structure. The methodology is used to analyze data from a multi-model air quality ensemble system. The models are operational long-range transport and dispersion models used for the real-time simulation of pollutant dispersion or the accidental release of radioactive nuclides in the atmosphere. We apply the described methodology to agglomerate and to individuate the models that characterize the predicted atmospheric pollutants from the ETEX-1 experiment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/29063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact