The recent technological advances are producing huge data sets in almost all fields of scientific research, from astronomy to genetics. Although each research field often requires ad-hoc, fine tuned, procedures to properly exploit all the available information inherently present in the data, there is an urgent need for a new generation of general computational theories and tools capable to boost most human activities of data analysis. Here we propose Probabilistic Principal Surfaces (PPS) as an effective high-D data visualization and clustering tool for data mining applications, emphasizing its flexibility and generality of use in data-rich field. In order to better illustrate the potentialities of the method, we also provide a real world case-study by discussing the use of PPS for the analysis of yeast gene expression levels from microarray chips.
Titolo: | Probabilistic principal surfaces for yeast gene microarray data mining | |
Autori: | ||
Data di pubblicazione: | 2004 | |
Abstract: | The recent technological advances are producing huge data sets in almost all fields of scientific research, from astronomy to genetics. Although each research field often requires ad-hoc, fine tuned, procedures to properly exploit all the available information inherently present in the data, there is an urgent need for a new generation of general computational theories and tools capable to boost most human activities of data analysis. Here we propose Probabilistic Principal Surfaces (PPS) as an effective high-D data visualization and clustering tool for data mining applications, emphasizing its flexibility and generality of use in data-rich field. In order to better illustrate the potentialities of the method, we also provide a real world case-study by discussing the use of PPS for the analysis of yeast gene expression levels from microarray chips. | |
Handle: | http://hdl.handle.net/11367/26183 | |
ISBN: | 0769521428 | |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |