The term proteome is traditionally associated with the identification of a large number of proteins within complex mixtures originating from a given organelle, cell or even organism. Current proteome investigations are basically focused on two major areas, expression proteomics and functional proteomics. Both approaches rely on the fractionation of protein mixtures essentially by two-dimensional polyacrylamide gel electrophoresis (2D-gel) and the identification of individual protein bands by mass spectrometric techniques (2D-MS). Functional proteomics approaches are basically addressing two main targets, the elucidation of the biological function of unknown proteins and the definition of cellular mechanisms at the molecular level. In the cell many processes are governed not only by the relative abundance of proteins but also by rapid and transient regulation of activity, association and localization of proteins and protein complexes. The association of an unknown protein with partners belonging to a specific protein complex involved in a particular process would then be strongly suggestive of its biological function. The identification of interacting proteins in stable complexes in a cellular system is essentially achieved by affinity-based procedures. Different strategies relying on this simple concept have been developed and a brief overview of the main approaches presently used in functional proteomics studies is described.
Interaction Proteomics
ORRU', STEFANIA;
2005-01-01
Abstract
The term proteome is traditionally associated with the identification of a large number of proteins within complex mixtures originating from a given organelle, cell or even organism. Current proteome investigations are basically focused on two major areas, expression proteomics and functional proteomics. Both approaches rely on the fractionation of protein mixtures essentially by two-dimensional polyacrylamide gel electrophoresis (2D-gel) and the identification of individual protein bands by mass spectrometric techniques (2D-MS). Functional proteomics approaches are basically addressing two main targets, the elucidation of the biological function of unknown proteins and the definition of cellular mechanisms at the molecular level. In the cell many processes are governed not only by the relative abundance of proteins but also by rapid and transient regulation of activity, association and localization of proteins and protein complexes. The association of an unknown protein with partners belonging to a specific protein complex involved in a particular process would then be strongly suggestive of its biological function. The identification of interacting proteins in stable complexes in a cellular system is essentially achieved by affinity-based procedures. Different strategies relying on this simple concept have been developed and a brief overview of the main approaches presently used in functional proteomics studies is described.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.