Advancements in the current practices used in robustness analysis for FCS design refinement by introducing a method that takes into account nonlinear effects of multiple uncertainties over the whole trajectory, to be used before robustness is finally assessed with MC analysis has been reported. Current practice in FCS robustness analysis for this kind of application mainly relies on the theory of linear time-invariant (LTI) systems. The method delivers feedback on the causes of requirement violation and adopts robustness criteria directly linked to the original mission or system requirements, such as those employed in MC analyses. The nonlinear robustness criterion proposed in the present work is based on the practical stability and/or finite time stability concepts. The practical stability property improves the accuracy in robustness evaluation with respect to frozen-time approaches, thus reducing the risk of discovering additional effects during robustness verification with Monte Carlo techniques.
Robustness Analysis for Terminal Phases of Re-entry Flight
TANCREDI, Urbano;
2009-01-01
Abstract
Advancements in the current practices used in robustness analysis for FCS design refinement by introducing a method that takes into account nonlinear effects of multiple uncertainties over the whole trajectory, to be used before robustness is finally assessed with MC analysis has been reported. Current practice in FCS robustness analysis for this kind of application mainly relies on the theory of linear time-invariant (LTI) systems. The method delivers feedback on the causes of requirement violation and adopts robustness criteria directly linked to the original mission or system requirements, such as those employed in MC analyses. The nonlinear robustness criterion proposed in the present work is based on the practical stability and/or finite time stability concepts. The practical stability property improves the accuracy in robustness evaluation with respect to frozen-time approaches, thus reducing the risk of discovering additional effects during robustness verification with Monte Carlo techniques.File | Dimensione | Formato | |
---|---|---|---|
paperTancredi_institutionalPosting.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
252.72 kB
Formato
Adobe PDF
|
252.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.