In the last decades, the increasing employment of unmanned aerial vehicles (UAVs) in civil applications has highlighted the potential of coordinated multi-aircraft missions. Such an approach offers advantages in terms of cost-effectiveness, operational flexibility, and mission success rates, particularly in complex scenarios such as search and rescue operations, environmental monitoring, and surveillance. However, achieving global situational awareness, although essential, represents a significant challenge, due to computational and communication constraints. This paper proposes a Distributed Moving Horizon Estimation (DMHE) technique that integrates consensus theory and Moving Horizon Estimation to optimize computational efficiency, minimize communication requirements, and enhance system robustness. The proposed DMHE framework is applied to a formation of UAVs performing target detection and tracking in challenging environments. It provides a fully distributed architecture that enables UAVs to estimate the position and velocity of other fleet members while simultaneously detecting static and dynamic targets. The effectiveness of the technique is proved by several numerical simulation, including an in-depth sensitivity analysis of key algorithm parameters, such as fleet network topology and consensus iterations and the evaluation of the robustness against node faults and information losses.
A Consensus-Driven Distributed Moving Horizon Estimation Approach for Target Detection Within Unmanned Aerial Vehicle Formations in Rescue Operations
Bassolillo S. R.;D'Amato E.;Notaro I.
2025-01-01
Abstract
In the last decades, the increasing employment of unmanned aerial vehicles (UAVs) in civil applications has highlighted the potential of coordinated multi-aircraft missions. Such an approach offers advantages in terms of cost-effectiveness, operational flexibility, and mission success rates, particularly in complex scenarios such as search and rescue operations, environmental monitoring, and surveillance. However, achieving global situational awareness, although essential, represents a significant challenge, due to computational and communication constraints. This paper proposes a Distributed Moving Horizon Estimation (DMHE) technique that integrates consensus theory and Moving Horizon Estimation to optimize computational efficiency, minimize communication requirements, and enhance system robustness. The proposed DMHE framework is applied to a formation of UAVs performing target detection and tracking in challenging environments. It provides a fully distributed architecture that enables UAVs to estimate the position and velocity of other fleet members while simultaneously detecting static and dynamic targets. The effectiveness of the technique is proved by several numerical simulation, including an in-depth sensitivity analysis of key algorithm parameters, such as fleet network topology and consensus iterations and the evaluation of the robustness against node faults and information losses.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.