Alongside the well-known central modulatory role, the Kisspeptin system, comprising Kiss1, its cleavage products (Kisspeptins), and Kisspeptin receptor (Kiss1R), was found to regulate gonadal functions in vertebrates; however, its functional role in the male gamete and its localization during maturation have been poorly understood. The present study analyzed Kisspeptin system in dog testis and spermatozoa recovered from different segments of the epididymis, with focus on Kiss1R on sperm surface alongside the maturation during epididymal transit, demonstrated by modification in sperm kinetic, morphology, and protamination. The proteins Kiss1 and Kiss1R were detected in dog testis. The receptor Kiss1R only was detected in total protein extracts from epididymis spermatozoa, whereas dot blot revealed Kiss1 immunoreactivity in the epidydimal fluid. An increase of the Kiss1R protein on sperm surface along the length of the epididymis, with spermatozoa in the tail showing plasma membrane integrity and Kiss1R protein (p < 0.05 vs. epididymis head and body) was observed by flow cytometry and further confirmed by epifluorescence microscopy and Western blot carried on sperm membrane preparations. In parallel, during the transit in the epididymis spermatozoa significantly modified their ability to move and the pattern of motility; a progressive increase in protaminization also occurred. In conclusion, Kisspeptin system was detected in dog testis and spermatozoa. Kiss1R trafficking toward plasma membrane along the length of the epididymis and Kiss1 in epididymal fluid suggested a new functional role of the Kisspeptin system in sperm maturation and storage.
Kisspeptin receptor on the sperm surface reflects epididymal maturation in the dog
Mele E.;Meccariello R.
Supervision
2021-01-01
Abstract
Alongside the well-known central modulatory role, the Kisspeptin system, comprising Kiss1, its cleavage products (Kisspeptins), and Kisspeptin receptor (Kiss1R), was found to regulate gonadal functions in vertebrates; however, its functional role in the male gamete and its localization during maturation have been poorly understood. The present study analyzed Kisspeptin system in dog testis and spermatozoa recovered from different segments of the epididymis, with focus on Kiss1R on sperm surface alongside the maturation during epididymal transit, demonstrated by modification in sperm kinetic, morphology, and protamination. The proteins Kiss1 and Kiss1R were detected in dog testis. The receptor Kiss1R only was detected in total protein extracts from epididymis spermatozoa, whereas dot blot revealed Kiss1 immunoreactivity in the epidydimal fluid. An increase of the Kiss1R protein on sperm surface along the length of the epididymis, with spermatozoa in the tail showing plasma membrane integrity and Kiss1R protein (p < 0.05 vs. epididymis head and body) was observed by flow cytometry and further confirmed by epifluorescence microscopy and Western blot carried on sperm membrane preparations. In parallel, during the transit in the epididymis spermatozoa significantly modified their ability to move and the pattern of motility; a progressive increase in protaminization also occurred. In conclusion, Kisspeptin system was detected in dog testis and spermatozoa. Kiss1R trafficking toward plasma membrane along the length of the epididymis and Kiss1 in epididymal fluid suggested a new functional role of the Kisspeptin system in sperm maturation and storage.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.