Industrial assistive systems result from a multidisciplinary effort that integrates IoT (and Industrial IoT), Cognetics, and Artificial Intelligence. This paper evaluates the Prediction by Partial Matching algorithm as a component of an assembly assistance system that supports factory workers, by providing choices for the next manufacturing step. The evaluation of the proposed method was performed on datasets collected within an experiment involving trainees and experienced workers. The goal is to find out which method best suits the datasets in order to be integrated afterwards into our context-aware assistance system. The obtained results show that the Prediction by Partial Matching method presents a significant improvement with respect to the existing Markov predictors.
An empirical evaluation of prediction by partial matching in assembly assistance systems
Fiore U.;
2021-01-01
Abstract
Industrial assistive systems result from a multidisciplinary effort that integrates IoT (and Industrial IoT), Cognetics, and Artificial Intelligence. This paper evaluates the Prediction by Partial Matching algorithm as a component of an assembly assistance system that supports factory workers, by providing choices for the next manufacturing step. The evaluation of the proposed method was performed on datasets collected within an experiment involving trainees and experienced workers. The goal is to find out which method best suits the datasets in order to be integrated afterwards into our context-aware assistance system. The obtained results show that the Prediction by Partial Matching method presents a significant improvement with respect to the existing Markov predictors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.