On 12 November 2014, the Philae lander descended towards comet 67P/Churyumov–Gerasimenko, bounced twice off the surface, then arrived under an overhanging cliff in the Abydos region. The landing process provided insights into the properties of a cometary nucleus1–3. Here we report an investigation of the previously undiscovered site of the second touchdown, where Philae spent almost two minutes of its cross-comet journey, producing four distinct surface contacts on two adjoining cometary boulders. It exposed primitive water ice—that is, water ice from the time of the comet’s formation 4.5 billion years ago—in their interiors while travelling through a crevice between the boulders. Our multi-instrument observations made 19 months later found that this water ice, mixed with ubiquitous dark organic-rich material, has a local dust/ice mass ratio of 2.3−0.16+0.2:1, matching values previously observed in freshly exposed water ice from outbursts4 and water ice in shadow5,6. At the end of the crevice, Philae made a 0.25-metre-deep impression in the boulder ice, providing in situ measurements confirming that primitive ice has a very low compressive strength (less than 12 pascals, softer than freshly fallen light snow) and allowing a key estimation to be made of the porosity (75 ± 7 per cent) of the boulders’ icy interiors. Our results provide constraints for cometary landers seeking access to a volatile-rich ice sample.

The Philae lander reveals low-strength primitive ice inside cometary boulders

Rotundi A.;
2020-01-01

Abstract

On 12 November 2014, the Philae lander descended towards comet 67P/Churyumov–Gerasimenko, bounced twice off the surface, then arrived under an overhanging cliff in the Abydos region. The landing process provided insights into the properties of a cometary nucleus1–3. Here we report an investigation of the previously undiscovered site of the second touchdown, where Philae spent almost two minutes of its cross-comet journey, producing four distinct surface contacts on two adjoining cometary boulders. It exposed primitive water ice—that is, water ice from the time of the comet’s formation 4.5 billion years ago—in their interiors while travelling through a crevice between the boulders. Our multi-instrument observations made 19 months later found that this water ice, mixed with ubiquitous dark organic-rich material, has a local dust/ice mass ratio of 2.3−0.16+0.2:1, matching values previously observed in freshly exposed water ice from outbursts4 and water ice in shadow5,6. At the end of the crevice, Philae made a 0.25-metre-deep impression in the boulder ice, providing in situ measurements confirming that primitive ice has a very low compressive strength (less than 12 pascals, softer than freshly fallen light snow) and allowing a key estimation to be made of the porosity (75 ± 7 per cent) of the boulders’ icy interiors. Our results provide constraints for cometary landers seeking access to a volatile-rich ice sample.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/92799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact