A novel mathematical formulation is presented for the applications of the stress-driven nonlocal theory of elasticity to engineering nano-scale problems requiring longitudinal discretization. Specifically, a differential formulation accompanied with novel constitutive continuity conditions is provided for determining exact closed-form solutions of nonlocal Euler-Bernoulli beams with loading discontinuities, i.e. points of discontinuity for external loads and internal forces. Constitutive continuity conditions have to be satisfied in interior points where a loading discontinuity occurs and contain integral convolutions of the stress over suitable parts of the nonlocal beam. Several results show the effectiveness of the proposed method.

Exact closed-form solutions for nonlocal beams with loading discontinuities

Darban H.;Luciano R.
2020-01-01

Abstract

A novel mathematical formulation is presented for the applications of the stress-driven nonlocal theory of elasticity to engineering nano-scale problems requiring longitudinal discretization. Specifically, a differential formulation accompanied with novel constitutive continuity conditions is provided for determining exact closed-form solutions of nonlocal Euler-Bernoulli beams with loading discontinuities, i.e. points of discontinuity for external loads and internal forces. Constitutive continuity conditions have to be satisfied in interior points where a loading discontinuity occurs and contain integral convolutions of the stress over suitable parts of the nonlocal beam. Several results show the effectiveness of the proposed method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/91470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 31
social impact