In this study, synthetic aperture radar (SAR) imaging of waves across ocean fronts was investigated using C-band Sentinel-1 VV-polarized SAR imagery collected over the Yangtze and the Zhujiang estuaries. The presence of ocean fronts in the study area was confirmed by collocated sea surface temperature (SST) data provided by the Advanced Very High Resolution Radiometer (AVHRR) and sea surface current information from the National Ocean Partnership Program (NOPP) based on the HYbrid Coordinate Ocean Model (HYCOM). The experimental results revealed that as the current speed increased, the cut-off wavelength (λc) increased as well. The effect of the increasing azimuth cut-off wavelength, however, was relatively weak in terms of variations of the normalized radar cross-section (NRCS), i.e., it was within 2 dB for λc ≤ 60 m. Hence, it was weaker than the NRCS variation related to SST. Larger NRCS variations (i.e., within 5 dB) occurred for λc values up to 120 m. In addition, the experimental results also demonstrated that the parameterized first-guess spectrum method (PFSM) wave retrieval performance was affected by ocean fronts. In particular, overestimations occurred when ocean fronts were present and λc was < 100 m.

Analysis of waves observed by synthetic aperture radar across ocean fronts

Nunziata F.;Corcione V.
2020-01-01

Abstract

In this study, synthetic aperture radar (SAR) imaging of waves across ocean fronts was investigated using C-band Sentinel-1 VV-polarized SAR imagery collected over the Yangtze and the Zhujiang estuaries. The presence of ocean fronts in the study area was confirmed by collocated sea surface temperature (SST) data provided by the Advanced Very High Resolution Radiometer (AVHRR) and sea surface current information from the National Ocean Partnership Program (NOPP) based on the HYbrid Coordinate Ocean Model (HYCOM). The experimental results revealed that as the current speed increased, the cut-off wavelength (λc) increased as well. The effect of the increasing azimuth cut-off wavelength, however, was relatively weak in terms of variations of the normalized radar cross-section (NRCS), i.e., it was within 2 dB for λc ≤ 60 m. Hence, it was weaker than the NRCS variation related to SST. Larger NRCS variations (i.e., within 5 dB) occurred for λc values up to 120 m. In addition, the experimental results also demonstrated that the parameterized first-guess spectrum method (PFSM) wave retrieval performance was affected by ocean fronts. In particular, overestimations occurred when ocean fronts were present and λc was < 100 m.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/90132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact