Strengthening strategies and structural rehabilitation of existing buildings with innovative materials and techniques are today one of the main activities in the field of structural engineering. Externally bonded Fiber Reinforced Cementitious Matrix (FRCM), materials are spreading as an alternative strengthening technique to the more traditional Fiber Reinforced Polymer (FRP) ones, especially for masonry elements. This research focuses on the assessment of the shear strength of in-plane FRCM-strengthened masonry walls by means of code predictions and numerical results, with particular attention on the interpretation of diagonal compression tests simulated by means of Finite Element (FE) models. Firstly, the various approaches commonly adopted for the interpretation of diagonal compression tests in terms of shear strength were examined, since codes give generally provisions in terms of maximum shear force, while several experimental and numerical results of diagonal compression tests are available in literature. Then, the numerical simulations of diagonal compression tests obtained by several FE analyses in a previous work were examined in light of these different approaches; the corresponding predictions of the shear force are compared with code indications in order to individuate the most reliable approach both for the un-strengthened and the FRCM-strengthened walls. For the latter ones, a detailed analysis of the actual strain levels in the reinforcement was carried out, too, by means of FE analysis.
Comparison between design formulations and numerical results for in-plane FRCM-strengthened masonry walls
Crisci G.
;Ceroni F.;
2020-01-01
Abstract
Strengthening strategies and structural rehabilitation of existing buildings with innovative materials and techniques are today one of the main activities in the field of structural engineering. Externally bonded Fiber Reinforced Cementitious Matrix (FRCM), materials are spreading as an alternative strengthening technique to the more traditional Fiber Reinforced Polymer (FRP) ones, especially for masonry elements. This research focuses on the assessment of the shear strength of in-plane FRCM-strengthened masonry walls by means of code predictions and numerical results, with particular attention on the interpretation of diagonal compression tests simulated by means of Finite Element (FE) models. Firstly, the various approaches commonly adopted for the interpretation of diagonal compression tests in terms of shear strength were examined, since codes give generally provisions in terms of maximum shear force, while several experimental and numerical results of diagonal compression tests are available in literature. Then, the numerical simulations of diagonal compression tests obtained by several FE analyses in a previous work were examined in light of these different approaches; the corresponding predictions of the shear force are compared with code indications in order to individuate the most reliable approach both for the un-strengthened and the FRCM-strengthened walls. For the latter ones, a detailed analysis of the actual strain levels in the reinforcement was carried out, too, by means of FE analysis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.