We establish the higher fractional differentiability of the solutions of a problem in divergence form of the type (Formula presented.) The main features consist in assuming that the partial map ξ→A(x,ξ) has p(x)-growth, the datum F is Besov regular and both the partial map x → A(x,ξ) and the function x → p(x) are Orlicz–Besov regular.

Besov regularity for solutions of elliptic equations with variable exponents

Giova R.
2020

Abstract

We establish the higher fractional differentiability of the solutions of a problem in divergence form of the type (Formula presented.) The main features consist in assuming that the partial map ξ→A(x,ξ) has p(x)-growth, the datum F is Besov regular and both the partial map x → A(x,ξ) and the function x → p(x) are Orlicz–Besov regular.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/84134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact