Peroxisome proliferator-activated receptor gamma (PPAR gamma) is one of the most extensively studied ligand-inducible transcription factors (TFs), able to modulate its transcriptional activity through conformational changes. It is of particular interest because of its pleiotropic functions: it plays a crucial role in the expression of key genes involved in adipogenesis, lipid and glucid metabolism, atherosclerosis, inflammation, and cancer. Its protein isoforms, the wide number of PPAR gamma target genes, ligands, and coregulators contribute to determine the complexity of its function. In addition, the presence of genetic variants is likely to affect expression levels of target genes although the impact of PPARG gene variations on the expression of target genes is not fully understood. The introduction of massively parallel sequencing platforms-in the Next Generation Sequencing (NGS) era-has revolutionized the way of investigating the genetic causes of inherited diseases. In this context, DNA-Seq for identifying-within both coding and regulatory regions of PPARG gene-novel nucleotide variations and haplotypes associated to human diseases, ChIP-Seq for defining a PPAR gamma binding map, and RNA-Seq for unraveling the wide and intricate gene pathways regulated by PPARG, represent incredible steps toward the understanding of PPAR gamma in health and disease.

PPARG: Gene Expression Regulation and Next-Generation Sequencing for Unsolved Issues

Ciccodicola A
2010-01-01

Abstract

Peroxisome proliferator-activated receptor gamma (PPAR gamma) is one of the most extensively studied ligand-inducible transcription factors (TFs), able to modulate its transcriptional activity through conformational changes. It is of particular interest because of its pleiotropic functions: it plays a crucial role in the expression of key genes involved in adipogenesis, lipid and glucid metabolism, atherosclerosis, inflammation, and cancer. Its protein isoforms, the wide number of PPAR gamma target genes, ligands, and coregulators contribute to determine the complexity of its function. In addition, the presence of genetic variants is likely to affect expression levels of target genes although the impact of PPARG gene variations on the expression of target genes is not fully understood. The introduction of massively parallel sequencing platforms-in the Next Generation Sequencing (NGS) era-has revolutionized the way of investigating the genetic causes of inherited diseases. In this context, DNA-Seq for identifying-within both coding and regulatory regions of PPARG gene-novel nucleotide variations and haplotypes associated to human diseases, ChIP-Seq for defining a PPAR gamma binding map, and RNA-Seq for unraveling the wide and intricate gene pathways regulated by PPARG, represent incredible steps toward the understanding of PPAR gamma in health and disease.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/81350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 46
social impact