Human mesenchymal stem cells (hMSC) have become an important resource in developing strategies for regenerative medicine and tissue engineering, owing to their ability to renew and their potential for differentiation into cells of various types of tissues. Pulsed electromagnetic field (PEMF) stimulation has been used for several years in the treatment of fracture healing, with clinical beneficial effects, and several studies have demonstrated its capacity to increase bone tissue regeneration. In the present study, stromal cells of human bone marrow (BMSC), obtained from healthy donors, were appropriately expanded and underwent PEMF stimulation eight hours a day for fourteen days. Parameters such as proliferation and differentiation ability were evaluated on stimulated cultures. The evaluation of the marker expression was performed by RT-PCR for osteocalcin, by alkaline phosphatase quantitation and by histochemical stains. The results we obtained showed that BMSC treated with PEMF begin differentiation earlier than untreated BMSC, as shown by the markers used. The data show that PEMF is able to increase the osteogenic differentiation potential in adult mesenchymal cells isolated from young patients.

Differentiation of human osteoprogenitor cells increases after treatment with pulsed electromagnetic fields

Lucariello A.;
2012-01-01

Abstract

Human mesenchymal stem cells (hMSC) have become an important resource in developing strategies for regenerative medicine and tissue engineering, owing to their ability to renew and their potential for differentiation into cells of various types of tissues. Pulsed electromagnetic field (PEMF) stimulation has been used for several years in the treatment of fracture healing, with clinical beneficial effects, and several studies have demonstrated its capacity to increase bone tissue regeneration. In the present study, stromal cells of human bone marrow (BMSC), obtained from healthy donors, were appropriately expanded and underwent PEMF stimulation eight hours a day for fourteen days. Parameters such as proliferation and differentiation ability were evaluated on stimulated cultures. The evaluation of the marker expression was performed by RT-PCR for osteocalcin, by alkaline phosphatase quantitation and by histochemical stains. The results we obtained showed that BMSC treated with PEMF begin differentiation earlier than untreated BMSC, as shown by the markers used. The data show that PEMF is able to increase the osteogenic differentiation potential in adult mesenchymal cells isolated from young patients.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/78356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 31
social impact