In this study, the azimuth cut-off approach, which is typically adopted to estimate wind speed from Synthetic Aperture Radar (SAR) imagery collected under nominal wind conditions, is discussed with respect to high wind regime cases. First, the key roles played by the pixel spacing, the size of the boxes used to partition the SAR imagery and the image texture (homogeneity) are discussed in terms of their effects on the azimuth cut-off (λc) estimation. Then, the reliability of the λc estimation is analyzed by measuring the distance between the measured and fitted autocorrelation functions (ACFs). This analysis shows that it is of paramount importance to filter unfeasible/unreliable λc values. To identify those values in an objective way a criterion is proposed that is based on the χ2 test performed over a large dataset of Sentinel-1 SAR imagery. The effectiveness of the χ2 test is verified by correlating the accepted estimates against auxiliary significant wave height data.
A new azimuth cut-off procedure to retrieve significant wave height under high wind regimes
Corcione V.;Nunziata F.;Migliaccio M.
2018-01-01
Abstract
In this study, the azimuth cut-off approach, which is typically adopted to estimate wind speed from Synthetic Aperture Radar (SAR) imagery collected under nominal wind conditions, is discussed with respect to high wind regime cases. First, the key roles played by the pixel spacing, the size of the boxes used to partition the SAR imagery and the image texture (homogeneity) are discussed in terms of their effects on the azimuth cut-off (λc) estimation. Then, the reliability of the λc estimation is analyzed by measuring the distance between the measured and fitted autocorrelation functions (ACFs). This analysis shows that it is of paramount importance to filter unfeasible/unreliable λc values. To identify those values in an objective way a criterion is proposed that is based on the χ2 test performed over a large dataset of Sentinel-1 SAR imagery. The effectiveness of the χ2 test is verified by correlating the accepted estimates against auxiliary significant wave height data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.