The present study considers the optimal pre-tensioning design of lattice structures forming composite cable-stayed bridges. With reference to a model problem, a target bending moment distribution over the longitudinal beams is identified, with the aim of achieving an optimized use of the material composing the bridge. Next, a procedure for the optimization of cable forces is developed, in order to achieve the desired bending moment distribution through the application of a self-equilibrated state of stress induced by optimal cable pre-tensioning. Results indicate that the given design approach is suitable for the optimization of the pre-tensioning sequence of arbitrary composite cable-stayed bridges.

Optimal prestress design of composite cable-stayed bridges

Farina, I.;
2017-01-01

Abstract

The present study considers the optimal pre-tensioning design of lattice structures forming composite cable-stayed bridges. With reference to a model problem, a target bending moment distribution over the longitudinal beams is identified, with the aim of achieving an optimized use of the material composing the bridge. Next, a procedure for the optimization of cable forces is developed, in order to achieve the desired bending moment distribution through the application of a self-equilibrated state of stress induced by optimal cable pre-tensioning. Results indicate that the given design approach is suitable for the optimization of the pre-tensioning sequence of arbitrary composite cable-stayed bridges.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/66821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? ND
social impact