Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
For 0 < s < 1, we consider the Dirichlet problem for the fractional nonlocal Ornstein– Uhlenbeck equation ((−∆ + x · ∇)^s u = f in Ω, u = 0 on ∂Ω, where Ω is a possibly unbounded open subset of Rn, n ≥ 2. The appropriate functional settings for this nonlocal equation and its corresponding extension problem are developed. We apply Gaussian symmetrization techniques to derive a concentration comparison estimate for solutions. As consequences, novel L^p and L^p(log L)^α regularity estimates in terms of the datum f are obtained by comparing u with half-space solutions.
The fractional nonlocal Ornstein--Uhlenbeck equation, Gaussian symmetrization and regularity
For 0 < s < 1, we consider the Dirichlet problem for the fractional nonlocal Ornstein– Uhlenbeck equation ((−∆ + x · ∇)^s u = f in Ω, u = 0 on ∂Ω, where Ω is a possibly unbounded open subset of Rn, n ≥ 2. The appropriate functional settings for this nonlocal equation and its corresponding extension problem are developed. We apply Gaussian symmetrization techniques to derive a concentration comparison estimate for solutions. As consequences, novel L^p and L^p(log L)^α regularity estimates in terms of the datum f are obtained by comparing u with half-space solutions.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/65254
Citazioni
ND
5
3
social impact
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2021-2023 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.