The containment of power consumption and the use of alternative green sources of energy are the new main goals of telecommunication operators, to cope with the rising energy costs, the increasingly rigid environmental standards, and the growing power requirements of modern high-performance networking devices. To address these challenges, we envision the necessity of introducing energy-efficiency and energy-awareness in the design, configuration and management of networks, and specifically in the design and implementation of enhanced control-plane protocols to be used in next generation networks. Accordingly, we focus on research and industrial challenges that foster new developments to decrease the carbon footprint while leveraging the capacities of highly dynamic, ultra-high-speed, networking. We critically discuss current approaches, research trends and technological innovations for the coming green era and we outline future perspectives towards new energy-oriented network planning, protocols and algorithms. We also combine all the above elements into a comprehensive energy-oriented network model within the context of a general constrained routing and wavelength assignment problem framework, and analyze and quantify through ILP formulations the savings that can be attained on the next generation networks. © 2011 Springer Science+Business Media, LLC.

Towards an energy-aware Internet: Modeling a cross-layer optimization approach

Fiore, Ugo;
2013-01-01

Abstract

The containment of power consumption and the use of alternative green sources of energy are the new main goals of telecommunication operators, to cope with the rising energy costs, the increasingly rigid environmental standards, and the growing power requirements of modern high-performance networking devices. To address these challenges, we envision the necessity of introducing energy-efficiency and energy-awareness in the design, configuration and management of networks, and specifically in the design and implementation of enhanced control-plane protocols to be used in next generation networks. Accordingly, we focus on research and industrial challenges that foster new developments to decrease the carbon footprint while leveraging the capacities of highly dynamic, ultra-high-speed, networking. We critically discuss current approaches, research trends and technological innovations for the coming green era and we outline future perspectives towards new energy-oriented network planning, protocols and algorithms. We also combine all the above elements into a comprehensive energy-oriented network model within the context of a general constrained routing and wavelength assignment problem framework, and analyze and quantify through ILP formulations the savings that can be attained on the next generation networks. © 2011 Springer Science+Business Media, LLC.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/63954
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 27
social impact