In this paper we prove the existence of continua of nonradial solutions for the Lane–Emden equation in the annulus. In a first result we show that there are infinitely many global continua detaching from the curve of radial solutions with any prescribed number of nodal zones. Next, using the fixed point index in cone, we produce nonradial solutions with a new type of symmetry. This result also applies to solutions with fixed signed, showing that the set of solutions to the Lane–Emden problem has a very rich and complex structure.

Nonradial sign changing solutions to Lane–Emden problem in an annulus

AMADORI, Anna Lisa;
2017-01-01

Abstract

In this paper we prove the existence of continua of nonradial solutions for the Lane–Emden equation in the annulus. In a first result we show that there are infinitely many global continua detaching from the curve of radial solutions with any prescribed number of nodal zones. Next, using the fixed point index in cone, we produce nonradial solutions with a new type of symmetry. This result also applies to solutions with fixed signed, showing that the set of solutions to the Lane–Emden problem has a very rich and complex structure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/59866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact