In this work, we present long period gratings (LPGs) in two different Fluorine-doped fibers realized by electric arc discharge (EAD) technique. Firstly, we optimized the EAD fabrication procedure for standard Ge-doped fibers where we are able to fabricate relatively short LPGs with deep attenuation bands (up to 32 dB) and trivial power losses. Successively, for the first time to the best of our knowledge, we produced LPGs in F-doped fibers with maximum attenuation band depths in range 25-30 dB and trivial power losses. We also investigated the sensitivity of LPGs fabricated in such F-doped fibers, with surrounding refractive index (SRI) and temperature changes, and compared the results with those of LPGs fabricated in standard fiber. We found that SRI response of LPGs in F-doped fibers is significantly higher than in standard fiber and it strongly depends on the type of F-doped fiber considered, whereas they exhibit a slightly lower sensitivity to temperature compared to LPGs in standard fiber.

Long period gratings written in fluorine-doped fibers by electric arc discharge technique

RANJAN, RAJEEV;ESPOSITO, FLAVIO;IADICICCO, Agostino;CAMPOPIANO, Stefania
2016-01-01

Abstract

In this work, we present long period gratings (LPGs) in two different Fluorine-doped fibers realized by electric arc discharge (EAD) technique. Firstly, we optimized the EAD fabrication procedure for standard Ge-doped fibers where we are able to fabricate relatively short LPGs with deep attenuation bands (up to 32 dB) and trivial power losses. Successively, for the first time to the best of our knowledge, we produced LPGs in F-doped fibers with maximum attenuation band depths in range 25-30 dB and trivial power losses. We also investigated the sensitivity of LPGs fabricated in such F-doped fibers, with surrounding refractive index (SRI) and temperature changes, and compared the results with those of LPGs fabricated in standard fiber. We found that SRI response of LPGs in F-doped fibers is significantly higher than in standard fiber and it strongly depends on the type of F-doped fiber considered, whereas they exhibit a slightly lower sensitivity to temperature compared to LPGs in standard fiber.
2016
9781510602199
9781510602199
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/54769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact