The evolution of the upper water column in the Mediterranean Sea during more than 60 years is reconstructed in terms of few parameters describing the mixed layer and the seasonal thermocline. The analysis covers the period 1945–2011 using data from three public sources: MEDAR-MEDATLAS, World Ocean Database, MFS-VOS program. Five procedures for estimating the mixed layer depth are described, discussed and compared using the 20-year long time series of temperature profiles of the DYFAMED station in the Ligurian Sea. On this basis the so-called three segments profile model (which approximates the upper water column with three segments representing mixed layer, thermocline and deep layer) has been selected for a systematic analysis at Mediterranean scale. A widespread increase of the thickness and temperature of the mixed layer, increase of the depth and decrease of the temperature of the thermocline base have been observed in summer and autumn during the recent decades. It is shown that positive temperature extremes of the mixed layer and of its thickness are potential drivers of the mass mortalities of benthic invertebrates documented since 1983. Hotspots of mixed layer anomalies have been also identified. These results refine previous analyses showing that ongoing and future warming of upper Mediterranean is likely to increase mass mortalities by producing environmental conditions beyond the limit of tolerance of some benthic species.

Anomalies of the upper water column in the Mediterranean Sea

ZAMBIANCHI, Enrico;
2017-01-01

Abstract

The evolution of the upper water column in the Mediterranean Sea during more than 60 years is reconstructed in terms of few parameters describing the mixed layer and the seasonal thermocline. The analysis covers the period 1945–2011 using data from three public sources: MEDAR-MEDATLAS, World Ocean Database, MFS-VOS program. Five procedures for estimating the mixed layer depth are described, discussed and compared using the 20-year long time series of temperature profiles of the DYFAMED station in the Ligurian Sea. On this basis the so-called three segments profile model (which approximates the upper water column with three segments representing mixed layer, thermocline and deep layer) has been selected for a systematic analysis at Mediterranean scale. A widespread increase of the thickness and temperature of the mixed layer, increase of the depth and decrease of the temperature of the thermocline base have been observed in summer and autumn during the recent decades. It is shown that positive temperature extremes of the mixed layer and of its thickness are potential drivers of the mass mortalities of benthic invertebrates documented since 1983. Hotspots of mixed layer anomalies have been also identified. These results refine previous analyses showing that ongoing and future warming of upper Mediterranean is likely to increase mass mortalities by producing environmental conditions beyond the limit of tolerance of some benthic species.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/54344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact