We focus on the Overcomplete Local Principal Component Analysis (OLPCA) method, which is widely adopted as denoising filter. We propose a programming approach resorting to Graphic Processor Units (GPUs), in order to massively parallelize some heavy computational tasks of the method. In our approach, we design and implement a parallel version of the OLPCA, by using a suitable mapping of the tasks on a GPU architecture with the aim to investigate the performance and the denoising features of the algorithm. The experimental results show improvements in terms of GFlops and memory throughput.

A GPU parallel implementation of the Local Principal Component Analysis overcomplete method for DW image denoising

GALLETTI, Ardelio;MARCELLINO, Livia
2016-01-01

Abstract

We focus on the Overcomplete Local Principal Component Analysis (OLPCA) method, which is widely adopted as denoising filter. We propose a programming approach resorting to Graphic Processor Units (GPUs), in order to massively parallelize some heavy computational tasks of the method. In our approach, we design and implement a parallel version of the OLPCA, by using a suitable mapping of the tasks on a GPU architecture with the aim to investigate the performance and the denoising features of the algorithm. The experimental results show improvements in terms of GFlops and memory throughput.
2016
9781509006793
9781509006793
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/54328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact