Sea oil pollution is a matter of great concern since it affects both the environment and human health. Recent studies demonstrated that synthetic aperture radar (SAR) polarimetry is able to provide additional information useful for environmental applications, i. e., oil spill observation. In this context, different approaches based on polarimetric SARs were developed. In this study, a dual-polarimetric feature, namely the modulus of the complex correlation coefficient between the co-polarized channels, is used to discriminate between sea oil spill and weak-damping look-alikes. The proposed approach relies on the fact that high correlation between co-polarized channels is expected over sea surface and weak-damping lookalikes due to the dominant Bragg scattering, while significantly lower correlation is expected over strong-damping oil spills since they are characterized by a no-Bragg scattering behaviour. Experimental results show that the modulus of the complex correlation between the co-polarized channels can be successfully exploited for both the observation of sea oil slicks and their discrimination from weak-damping look-alikes.

The modulus of the complex correlation coefficient between copolarized channels for oil spill observation

MIGLIACCIO, Maurizio;NUNZIATA, FERDINANDO;BUONO, ANDREA
2016-01-01

Abstract

Sea oil pollution is a matter of great concern since it affects both the environment and human health. Recent studies demonstrated that synthetic aperture radar (SAR) polarimetry is able to provide additional information useful for environmental applications, i. e., oil spill observation. In this context, different approaches based on polarimetric SARs were developed. In this study, a dual-polarimetric feature, namely the modulus of the complex correlation coefficient between the co-polarized channels, is used to discriminate between sea oil spill and weak-damping look-alikes. The proposed approach relies on the fact that high correlation between co-polarized channels is expected over sea surface and weak-damping lookalikes due to the dominant Bragg scattering, while significantly lower correlation is expected over strong-damping oil spills since they are characterized by a no-Bragg scattering behaviour. Experimental results show that the modulus of the complex correlation between the co-polarized channels can be successfully exploited for both the observation of sea oil slicks and their discrimination from weak-damping look-alikes.
2016
9789292213053
9789292213053
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/54216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact