Time-variant reliability analysis of a corroded bulk carrier in intact and damage conditions is performed by First-Order (FORM), Second-Order (SORM) Reliability Methods and Importance Sampling simulation. Annual failure probabilities are determined up to 25-year ship lifetime, accounting for time-variant corrosion wastage of structural members contributing to hull girder strength. Statistical properties of hull girder capacity are determined by Monte Carlo simulation, applying three correlation models among corrosion wastages of structural members contributing to hull girder strength, namely no correlation, full correlation and full correlation among wastages of structural members belonging to the same category of compartments. A modified incremental-iterative method is applied, to account for instantaneous neutral axis rotation, in case of asymmetrical damage conditions, as for collision and grounding events. Incidence of intact/damage condition, as well as correlation among corrosion wastages, on annual sagging/hogging time-variant failure probability is investigated and discussed. Time-variant sensitivity analyses for intact and damage conditions are also performed, to investigate the incidence of random variables’ uncertainties on the attained failure probability. Finally, the bulk carrier section scheme, benchmarked in the last ISSC Report, is applied as test case.

Time-variant bulk carrier reliability analysis in pure bending intact and damage conditions

PISCOPO, VINCENZO;SCAMARDELLA, Antonio
2016-01-01

Abstract

Time-variant reliability analysis of a corroded bulk carrier in intact and damage conditions is performed by First-Order (FORM), Second-Order (SORM) Reliability Methods and Importance Sampling simulation. Annual failure probabilities are determined up to 25-year ship lifetime, accounting for time-variant corrosion wastage of structural members contributing to hull girder strength. Statistical properties of hull girder capacity are determined by Monte Carlo simulation, applying three correlation models among corrosion wastages of structural members contributing to hull girder strength, namely no correlation, full correlation and full correlation among wastages of structural members belonging to the same category of compartments. A modified incremental-iterative method is applied, to account for instantaneous neutral axis rotation, in case of asymmetrical damage conditions, as for collision and grounding events. Incidence of intact/damage condition, as well as correlation among corrosion wastages, on annual sagging/hogging time-variant failure probability is investigated and discussed. Time-variant sensitivity analyses for intact and damage conditions are also performed, to investigate the incidence of random variables’ uncertainties on the attained failure probability. Finally, the bulk carrier section scheme, benchmarked in the last ISSC Report, is applied as test case.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/50697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact