Abstract In the present paper we prove existence results for solutions to nonlinear elliptic Neumann problems whose prototype is { − Δ p u − div ( c ( x ) | u | p − 2 u ) ) = f in Ω , ( | ∇ u | p − 2 ∇ u + c ( x ) | u | p − 2 u ) ⋅ n ̲ = 0 on ∂ Ω , when f is just a summable function. Our approach also allows us to prove a stability result for renormalized solutions and an existence result for operator with a zero order term.

Neumann problems for nonlinear elliptic equations with L^1 data

BETTA, MARIA FRANCESCA;
2015

Abstract

Abstract In the present paper we prove existence results for solutions to nonlinear elliptic Neumann problems whose prototype is { − Δ p u − div ( c ( x ) | u | p − 2 u ) ) = f in Ω , ( | ∇ u | p − 2 ∇ u + c ( x ) | u | p − 2 u ) ⋅ n ̲ = 0 on ∂ Ω , when f is just a summable function. Our approach also allows us to prove a stability result for renormalized solutions and an existence result for operator with a zero order term.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/30298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact