Classically a stand-alone GNSS receiver estimates its velocity by forming the approximate derivative of consecutive user positions or more often by using the Doppler observable. The first method is very inaccurate, while the second one allows estimation of the order of some cm/s. The TDCP (Time-Differenced Carrier Phase) technique, which consists in differencing successive carrier phases, enables accuracies at the mm/s level. A study on the existing TDCP velocity estimation algorithms has revealed that the use of different broadcast ephemeris sets to calculate the satellite positions and clock offsets produces a discontinuity in the TDCP measurements that affects the velocity estimation. We propose a method to overcome this limitation based on the use of the same set of ephemeris to calculate the satellite positions and clock offsets at consecutive epochs. We describe in detail the TDCP algorithm used and the complete implementation in MATLAB is included.

Time-differenced carrier phases technique for precise GNSS velocity estimation

FREDA, PIERLUIGI;GAGLIONE, SALVATORE;TROISI, Salvatore
2015

Abstract

Classically a stand-alone GNSS receiver estimates its velocity by forming the approximate derivative of consecutive user positions or more often by using the Doppler observable. The first method is very inaccurate, while the second one allows estimation of the order of some cm/s. The TDCP (Time-Differenced Carrier Phase) technique, which consists in differencing successive carrier phases, enables accuracies at the mm/s level. A study on the existing TDCP velocity estimation algorithms has revealed that the use of different broadcast ephemeris sets to calculate the satellite positions and clock offsets produces a discontinuity in the TDCP measurements that affects the velocity estimation. We propose a method to overcome this limitation based on the use of the same set of ephemeris to calculate the satellite positions and clock offsets at consecutive epochs. We describe in detail the TDCP algorithm used and the complete implementation in MATLAB is included.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/30198
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 62
social impact