Elucidation of molecular targets of a compound (mode of action, MoA) and of its off-targets is a crucial step in drug development. We developed an online collaborative resource (MANTRA 2.0) that supports this process by exploiting similarities between drug-induced transcriptional profiles. Drugs are organised in a network of nodes (drugs) and edges (similarities) highlighting “communities” of drugs sharing a similar MoA. A user can upload gene expression profiles (GEPs) before and after drug treatment in one or multiple cell types. An automated processing pipeline transforms the GEPs into a unique drug ”node” embedded in the drug-network. Visual inspection of the neighbouring drugs and communities helps in revealing its MoA, and to suggest new applications of known drugs (drug repurposing). MANTRA 2.0 allows storing and sharing user-generated network nodes, thus making MANTRA 2.0 a collaborative ever-growing resource.

Mantra 2.0: An online collaborative resource for drug mode of action and repurposing by network analysis

CUTILLO, Luisa
Writing – Review & Editing
;
2014

Abstract

Elucidation of molecular targets of a compound (mode of action, MoA) and of its off-targets is a crucial step in drug development. We developed an online collaborative resource (MANTRA 2.0) that supports this process by exploiting similarities between drug-induced transcriptional profiles. Drugs are organised in a network of nodes (drugs) and edges (similarities) highlighting “communities” of drugs sharing a similar MoA. A user can upload gene expression profiles (GEPs) before and after drug treatment in one or multiple cell types. An automated processing pipeline transforms the GEPs into a unique drug ”node” embedded in the drug-network. Visual inspection of the neighbouring drugs and communities helps in revealing its MoA, and to suggest new applications of known drugs (drug repurposing). MANTRA 2.0 allows storing and sharing user-generated network nodes, thus making MANTRA 2.0 a collaborative ever-growing resource.
File in questo prodotto:
File Dimensione Formato  
Bioinformatics2014Carrella.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 124.79 kB
Formato Adobe PDF
124.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/29336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 59
social impact