We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of non-linear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for the assets dynamics. As a consequence of the “geometric form” of these processes, the comparison principle holds without assigning spatial boundary data. We present applications of our result to (i) backward stochastic differential equations (BSDEs) and (ii) pricing of European and American derivatives via BSDEs. Regarding (i), we extend previous results on BSDEs in a Lévy setting and the connection to semilinear integro-partial differential equations.

Nonlinear degenerate integro-partial differential evolution equations related to geometric Levy processes and applications to backward stochastic differential equations

AMADORI, Anna Lisa;
2004

Abstract

We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of non-linear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for the assets dynamics. As a consequence of the “geometric form” of these processes, the comparison principle holds without assigning spatial boundary data. We present applications of our result to (i) backward stochastic differential equations (BSDEs) and (ii) pricing of European and American derivatives via BSDEs. Regarding (i), we extend previous results on BSDEs in a Lévy setting and the connection to semilinear integro-partial differential equations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/26978
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact