Background: The survival of zooplanktonic organisms is determined by their capability of moving in a fluid environment, trading off between the necessities of finding prey and avoiding predators. In previous numerical experiments, we concentrated on the relationship between natatorial modality and encounter success of a virtual copepod swimming in the presence of prey distributed either in patches or uniformly in the environment. Results: In this contribution, we extend this simulation framework to the encounter with chaetognaths, the primary copepod predators, considering different motion rules as a proxy of different swimming strategies and looking at the influence of the concentration of predators and the size of their detection radius in posing a risk on copepod survival. The outcomes of our simulations indicate that more convoluted trajectories are more vulnerable to predator encounter while straighter motions reduce predation risk. Conclusions: Our results are then complemented with those obtained in our previous studies to perform a general cost-benefit analysis of zooplankton motion.

Behaviour-dependent predation risk in swimming zooplankters

CIANELLI, DANIELA;ZAMBIANCHI, Enrico
2013-01-01

Abstract

Background: The survival of zooplanktonic organisms is determined by their capability of moving in a fluid environment, trading off between the necessities of finding prey and avoiding predators. In previous numerical experiments, we concentrated on the relationship between natatorial modality and encounter success of a virtual copepod swimming in the presence of prey distributed either in patches or uniformly in the environment. Results: In this contribution, we extend this simulation framework to the encounter with chaetognaths, the primary copepod predators, considering different motion rules as a proxy of different swimming strategies and looking at the influence of the concentration of predators and the size of their detection radius in posing a risk on copepod survival. The outcomes of our simulations indicate that more convoluted trajectories are more vulnerable to predator encounter while straighter motions reduce predation risk. Conclusions: Our results are then complemented with those obtained in our previous studies to perform a general cost-benefit analysis of zooplankton motion.
File in questo prodotto:
File Dimensione Formato  
uttieri_etal_ZS_2013.pdf

non disponibili

Licenza: DRM non definito
Dimensione 935.91 kB
Formato Adobe PDF
935.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/26737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact