Kernel Methods are algorithms that implicitly perform a nonlinear mapping of the input data to a high dimensional Feature Space. In this paper, we present a novel Kernel Method, Kernel K-Means for clustering problems. Unlike other popular clustering algorithms that yield piecewise linear borders among data, Kernel K-Means allows to get nonlinear separation surfaces in the data. Kernel K-Means compares better with popular clustering algorithms, on a synthetic dataset and two UCI real data benchmarks.
Titolo: | A Novel Kernel Method for Clustering | |
Autori: | ||
Data di pubblicazione: | 2005 | |
Abstract: | Kernel Methods are algorithms that implicitly perform a nonlinear mapping of the input data to a high dimensional Feature Space. In this paper, we present a novel Kernel Method, Kernel K-Means for clustering problems. Unlike other popular clustering algorithms that yield piecewise linear borders among data, Kernel K-Means allows to get nonlinear separation surfaces in the data. Kernel K-Means compares better with popular clustering algorithms, on a synthetic dataset and two UCI real data benchmarks. | |
Handle: | http://hdl.handle.net/11367/25928 | |
ISBN: | 978-1402034312 | |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.