Kernel Methods are algorithms that implicitly perform a nonlinear mapping of the input data to a high dimensional Feature Space. In this paper, we present a novel Kernel Method, Kernel K-Means for clustering problems. Unlike other popular clustering algorithms that yield piecewise linear borders among data, Kernel K-Means allows to get nonlinear separation surfaces in the data. Kernel K-Means compares better with popular clustering algorithms, on a synthetic dataset and two UCI real data benchmarks.

A Novel Kernel Method for Clustering

CAMASTRA, Francesco
;
2005-01-01

Abstract

Kernel Methods are algorithms that implicitly perform a nonlinear mapping of the input data to a high dimensional Feature Space. In this paper, we present a novel Kernel Method, Kernel K-Means for clustering problems. Unlike other popular clustering algorithms that yield piecewise linear borders among data, Kernel K-Means allows to get nonlinear separation surfaces in the data. Kernel K-Means compares better with popular clustering algorithms, on a synthetic dataset and two UCI real data benchmarks.
2005
978-1402034312
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/25928
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact