ABSTRACT Kernel Methods are algorithms that, by replacing the inner product with an appropriate positive definite function, implicitly perform a nonlinear mapping of the input data into a high-dimensional feature space. In this paper, we present a kernel method for clustering inspired by the classical K-Means algorithm in which each cluster is iteratively refined using a one-class Support Vector Machine. Our method, which can be easily implemented, compares favorably with respect to popular clustering algorithms, like K-Means, Neural Gas, and Self-Organizing Maps, on a synthetic data set and three UCI real data benchmarks (IRIS data, Wisconsin breast cancer database, Spam database).

A Novel Kernel Method for Clustering

CAMASTRA, Francesco;
2005

Abstract

ABSTRACT Kernel Methods are algorithms that, by replacing the inner product with an appropriate positive definite function, implicitly perform a nonlinear mapping of the input data into a high-dimensional feature space. In this paper, we present a kernel method for clustering inspired by the classical K-Means algorithm in which each cluster is iteratively refined using a one-class Support Vector Machine. Our method, which can be easily implemented, compares favorably with respect to popular clustering algorithms, like K-Means, Neural Gas, and Self-Organizing Maps, on a synthetic data set and three UCI real data benchmarks (IRIS data, Wisconsin breast cancer database, Spam database).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/24907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 274
  • ???jsp.display-item.citation.isi??? 205
social impact