Aim of this work is to analyze and to synthesize acoustic signals emitted by organ pipes. An Independent Component Analysis technique is applied to study the behavior of single notes or chords obtained in real and simulated environ- ments. These analyses suggest that the pipe acoustic signals can be described by a mixture of nonlinear oscillations obtained by a self-sustained feedback system (i.e., Andronov oscillator). This system allows to obtain a realistic pipe waveform with features very similar to the sound produced by the pipe and to propose an additive synthesis model. Moreover, suitable analogical and integrate circuit models, able to reproduce the registered waveforms and sound, have been designed. A comparison between real and reconstructed acoustic signals is provided.

Modeling and Generating Organ Pipes Self-Sustained Tones by Using ICA

CIARAMELLA, Angelo;
2011

Abstract

Aim of this work is to analyze and to synthesize acoustic signals emitted by organ pipes. An Independent Component Analysis technique is applied to study the behavior of single notes or chords obtained in real and simulated environ- ments. These analyses suggest that the pipe acoustic signals can be described by a mixture of nonlinear oscillations obtained by a self-sustained feedback system (i.e., Andronov oscillator). This system allows to obtain a realistic pipe waveform with features very similar to the sound produced by the pipe and to propose an additive synthesis model. Moreover, suitable analogical and integrate circuit models, able to reproduce the registered waveforms and sound, have been designed. A comparison between real and reconstructed acoustic signals is provided.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/24878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact