A novel ASI Lunar mission is here proposed by a task force of Ph.D. students. After 14 th January 2004 president G.W Bush's speech, a new input to space human exploration has been given. The Moon, thanks to nearness to Earth, is identified as an important test bed for all future human missions. The task force LUME mission has been designed to fit with Italian technological capabilities leaving it open anyway for international cooperation. Three main module are foreseen: a lunar low altitude polar orbiter, a lander near the "peak of the eternal light" and a rover. The polar orbiter is equipped with a complete suite of experiments for remote sensing observation (high resolution color camera, VIS-NIR imaging spectrometer, neutron and X spectrometers and SAR radar). This will provide a lunar surface map in high spatial resolution at different wavelengths: the orbiter payload will be used both to refine the selection of the landing site and to support the rover navigation. The lander will reach the region of "peak of the eternal light", located in the South Pole-Aitken Basin. This landing site has been selected for two main reasons: a) sun-light is always available to deliver the power useful to perform lander experiments and b) some easy-reachable and interesting craters are close to this region. The lander embark a sun powered ISRU plant to demonstrate O 2 extraction from lunar (ilmenite) soil and a robotic arm that can pick up lunar samples both from the soil and the rover. The nuclear powered rover is equipped with a drill system that, in the first phase of its mission, will deliver samples to be processed by the ISRU plant. In a second phase the rover will move to "de Gerlache" crater, identified as an attractive region to search for water ice. The rover drill includes an imaging VIS-NIR spectrometer dedicated to analyze the mineral composition and the water ice presence along the walls of the excavated hole. Both the orbiter and the lander will carry as payload two aquatic enclosed ecosystems (biospheres): these systems have been chosen as the best trade off between reduced requirements and easy data comprehension to evaluate space environment effects on life.

LUME: A new ASI proposal for Lunar Exploration and In Situ Resource Utilization

Tancredi, Urbano;
2005-01-01

Abstract

A novel ASI Lunar mission is here proposed by a task force of Ph.D. students. After 14 th January 2004 president G.W Bush's speech, a new input to space human exploration has been given. The Moon, thanks to nearness to Earth, is identified as an important test bed for all future human missions. The task force LUME mission has been designed to fit with Italian technological capabilities leaving it open anyway for international cooperation. Three main module are foreseen: a lunar low altitude polar orbiter, a lander near the "peak of the eternal light" and a rover. The polar orbiter is equipped with a complete suite of experiments for remote sensing observation (high resolution color camera, VIS-NIR imaging spectrometer, neutron and X spectrometers and SAR radar). This will provide a lunar surface map in high spatial resolution at different wavelengths: the orbiter payload will be used both to refine the selection of the landing site and to support the rover navigation. The lander will reach the region of "peak of the eternal light", located in the South Pole-Aitken Basin. This landing site has been selected for two main reasons: a) sun-light is always available to deliver the power useful to perform lander experiments and b) some easy-reachable and interesting craters are close to this region. The lander embark a sun powered ISRU plant to demonstrate O 2 extraction from lunar (ilmenite) soil and a robotic arm that can pick up lunar samples both from the soil and the rover. The nuclear powered rover is equipped with a drill system that, in the first phase of its mission, will deliver samples to be processed by the ISRU plant. In a second phase the rover will move to "de Gerlache" crater, identified as an attractive region to search for water ice. The rover drill includes an imaging VIS-NIR spectrometer dedicated to analyze the mineral composition and the water ice presence along the walls of the excavated hole. Both the orbiter and the lander will carry as payload two aquatic enclosed ecosystems (biospheres): these systems have been chosen as the best trade off between reduced requirements and easy data comprehension to evaluate space environment effects on life.
2005
1-56347-727-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/24590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact