The paper is focused on the dynamic simulation of a Photovoltaic/Thermal collector (PVT) integrated in a high-temperature Solar Heating and Cooling (SHC) system. The system is based on the following main components: concentrating parabolic PVT (photovoltaic thermal) collectors, a double-stage LiBr-H2O absorption chiller, storage tanks, auxiliary heaters, balance of plant devices. The PVT is made-up by a parabolic dish concentrator and a triple-junction receiver. The polygeneration system provides electricity, space heating and cooling and domestic hot water for a given building, whose simulation is also included in the model. In particular, PVT produces electric energy, which is in part consumed by the building loads (lights and equipments), in part by the system parasitic loads, whereas the eventual excess is sold to the public grid. Simultaneously, the PVT provides the heat required to drive the absorption chiller. The system was simulated by means of a zero-dimensional transient model, that allows the evaluation of temperature profiles and also heat/electrical energy flows for whatever period of the year. It is also possible to evaluate the overall energetic and economic performance on whatever time basis (day, week, month, year, etc.). The economic results show that the system under investigation can be profitable, if a proper funding policy is available. The paper also includes an extensive parametric analysis aiming at evaluating the set of design and operating parameters (solar field area, tank volumes, set point temperatures, etc.) that maximize the energetic and/or economic performance of the system.

The paper is focused on the dynamic simulation of a Photovoltaic/Thermal collector (PVT) integrated in a high-temperature Solar Heating and Cooling (SHC) system. The system is based on the following main components: concentrating parabolic PVT (photovoltaic thermal) collectors, a double-stage LiBr-H2O absorption chiller, storage tanks, auxiliary heaters, balance of plant devices. The PVT is made-up by a parabolic dish concentrator and a triple-junction receiver. The polygeneration system provides electricity, space heating and cooling and domestic hot water for a given building, whose simulation is also included in the model. In particular, PVT produces electric energy, which is in part consumed by the building loads (lights and equipments), in part by the system parasitic loads, whereas the eventual excess is sold to the public grid. Simultaneously, the PVT provides the heat required to drive the absorption chiller. The system was simulated by means of a zero-dimensional transient model, that allows the evaluation of temperature profiles and also heat/electrical energy flows for whatever period of the year. It is also possible to evaluate the overall energetic and economic performance on whatever time basis (day, week, month, year, etc.). The economic results show that the system under investigation can be profitable, if a proper funding policy is available. The paper also includes an extensive parametric analysis aiming at evaluating the set of design and operating parameters (solar field area, tank volumes, set point temperatures, etc.) that maximize the energetic and/or economic performance of the system. © 2012 Elsevier Ltd.

Dynamic simulation of a novel solar trigeneration system based on hybrid photovoltaic/thermal collectors (PVT)

VANOLI, Laura;
2012-01-01

Abstract

The paper is focused on the dynamic simulation of a Photovoltaic/Thermal collector (PVT) integrated in a high-temperature Solar Heating and Cooling (SHC) system. The system is based on the following main components: concentrating parabolic PVT (photovoltaic thermal) collectors, a double-stage LiBr-H2O absorption chiller, storage tanks, auxiliary heaters, balance of plant devices. The PVT is made-up by a parabolic dish concentrator and a triple-junction receiver. The polygeneration system provides electricity, space heating and cooling and domestic hot water for a given building, whose simulation is also included in the model. In particular, PVT produces electric energy, which is in part consumed by the building loads (lights and equipments), in part by the system parasitic loads, whereas the eventual excess is sold to the public grid. Simultaneously, the PVT provides the heat required to drive the absorption chiller. The system was simulated by means of a zero-dimensional transient model, that allows the evaluation of temperature profiles and also heat/electrical energy flows for whatever period of the year. It is also possible to evaluate the overall energetic and economic performance on whatever time basis (day, week, month, year, etc.). The economic results show that the system under investigation can be profitable, if a proper funding policy is available. The paper also includes an extensive parametric analysis aiming at evaluating the set of design and operating parameters (solar field area, tank volumes, set point temperatures, etc.) that maximize the energetic and/or economic performance of the system. © 2012 Elsevier Ltd.
2012
The paper is focused on the dynamic simulation of a Photovoltaic/Thermal collector (PVT) integrated in a high-temperature Solar Heating and Cooling (SHC) system. The system is based on the following main components: concentrating parabolic PVT (photovoltaic thermal) collectors, a double-stage LiBr-H2O absorption chiller, storage tanks, auxiliary heaters, balance of plant devices. The PVT is made-up by a parabolic dish concentrator and a triple-junction receiver. The polygeneration system provides electricity, space heating and cooling and domestic hot water for a given building, whose simulation is also included in the model. In particular, PVT produces electric energy, which is in part consumed by the building loads (lights and equipments), in part by the system parasitic loads, whereas the eventual excess is sold to the public grid. Simultaneously, the PVT provides the heat required to drive the absorption chiller. The system was simulated by means of a zero-dimensional transient model, that allows the evaluation of temperature profiles and also heat/electrical energy flows for whatever period of the year. It is also possible to evaluate the overall energetic and economic performance on whatever time basis (day, week, month, year, etc.). The economic results show that the system under investigation can be profitable, if a proper funding policy is available. The paper also includes an extensive parametric analysis aiming at evaluating the set of design and operating parameters (solar field area, tank volumes, set point temperatures, etc.) that maximize the energetic and/or economic performance of the system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/24400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 76
social impact