Wireless Sensor Networks (WSNs) enable a wealth of new applications where remote estimation is essential. Individual sensors simultaneously sense a dynamic process and transmit measured information over a shared channel to a central base station. The base station computes an estimate of the process state by means of a Kalman filter. In this paper we assume that, at each time step, only a subset of all sensors are selected to send their observations to the fusion center due to channel capacity constraints or limited energy budget. We propose a multi-step sensor selection strategy to schedule sensors to transmit for the next T steps of time with the goal of minimizing an objective function related to the Kalman filter error covariance matrix. This formulation, in a relaxed convex form, defines an unified framework to solve a large class of optimization problems over energy constrained WSNs. We offer some numerical examples to further illustrate the efficiency of the algorithm. (C) 2011 Elsevier Ltd. All rights reserved.
Titolo: | Sensor selection strategies for state estimation in energy constrained wireless sensor networks | |
Autori: | ||
Data di pubblicazione: | 2011 | |
Rivista: | ||
Abstract: | Wireless Sensor Networks (WSNs) enable a wealth of new applications where remote estimation is essential. Individual sensors simultaneously sense a dynamic process and transmit measured information over a shared channel to a central base station. The base station computes an estimate of the process state by means of a Kalman filter. In this paper we assume that, at each time step, only a subset of all sensors are selected to send their observations to the fusion center due to channel capacity constraints or limited energy budget. We propose a multi-step sensor selection strategy to schedule sensors to transmit for the next T steps of time with the goal of minimizing an objective function related to the Kalman filter error covariance matrix. This formulation, in a relaxed convex form, defines an unified framework to solve a large class of optimization problems over energy constrained WSNs. We offer some numerical examples to further illustrate the efficiency of the algorithm. (C) 2011 Elsevier Ltd. All rights reserved. | |
Handle: | http://hdl.handle.net/11367/24310 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |