In this paper we propose a heuristic strategy aimed at selecting and analysing a set of fi nancial assets, focusing attention on their multivariate tail dependence structure. The selection, obtained through an algorithmic procedure based on data mining tools, assumes the existence of a reference asset we are specifi cally interested to. The procedure allows one to opt for two alternatives: to prefer those assets exhibiting either a minimum lower tail dependence or a maximum upper tail dependence. The former could be a recommendable opportunity in a fi nancial crisis period. For the selected assets, the tail dependence coeffi cients are estimated by means of a proper multivariate copula function.
Combining Random Forest and Copula Function: a heuristic approach for selecting assets in a financial crisis perspective
DE LUCA, GIOVANNI;RIVIECCIO, GIORGIA;
2010-01-01
Abstract
In this paper we propose a heuristic strategy aimed at selecting and analysing a set of fi nancial assets, focusing attention on their multivariate tail dependence structure. The selection, obtained through an algorithmic procedure based on data mining tools, assumes the existence of a reference asset we are specifi cally interested to. The procedure allows one to opt for two alternatives: to prefer those assets exhibiting either a minimum lower tail dependence or a maximum upper tail dependence. The former could be a recommendable opportunity in a fi nancial crisis period. For the selected assets, the tail dependence coeffi cients are estimated by means of a proper multivariate copula function.File | Dimensione | Formato | |
---|---|---|---|
ISAFM2010DeLucaRivieccioZuccolotto.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
DRM non definito
Dimensione
643.9 kB
Formato
Adobe PDF
|
643.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.