The use of municipal wastewater in agriculture requires a careful monitoring of a range of hygiene parameters. Yearly hygienic impact assessments on soil and fruit were made between 2000 and 2006 in an olive (Olea europaea L.) grove established near a municipal wastewater treatment plant in Southern Italy (Ferrandina–Basilicata region, 408290 N, 168280 E). The experimental grove was managed in two plots. The first plot, non-tilled, was drip irrigated daily with reclaimed wastewater. The second plot was unirrigated (i.e. rainfed) and subject to conventional management for the region. Samples of wetted soil from different depths and of treated wastewater were analysed for Escherichia coli, enterococci, sulphitereducing Clostridium spores and Salmonella spp. Fruits were collected both from the canopy and from nets spread on the ground and analysed for faecal contamination. The average annual quantity of wastewater distributed was 293 mm. E. coli concentration in the wastewater varied considerably, being frequently above the stringent Italian mandatory limit of 10 CFU 100 mL 1 and also the WHO limit of 1000 MPN 100 mL 1. Salmonella was never detected in the wastewater, the soil or on the fruit samples. Slight increases in the other bacteria were observed in the wastewater-irrigated soil during the irrigation season and especially in the top 10 cm. Soil resilience and bacterial mortality/inactivation probably explains the seasonal decrease of soil bacteria content over the 7 years of the study. Because of their high resistance to disinfection treatments and to environmental conditions, the spores of the sulphitereducing bacterium Clostridium could be useful as an indicator of contamination in future guidelines that might be enacted for the use of wastewater in agriculture. No significant microbial contamination was recorded on fruit harvested directly from the canopy of the wastewater-irrigated trees. Contaminations on fruits sampled from the ground in the wastewater-irrigated plot were always low and usually similar to, or lower than those observed on drupes collected from the rainfed plot. In the rainfed plot, the recorded occasional contaminations were probably due to a number of factors, such as grazing of farm stock, presence of wild animals and surface water runoff from adjacent agricultural areas. This work confirms that, under suitable conditions, low-quality wastewater can be useful as an additional water resource for olive irrigation in water-scarce Mediterranean environments.

Irrigation of olive groves in Southern Italy with treated municipal wastewater:Effects on microbiological quality of soil and fruits

PASQUALE, Vincenzo;
2009-01-01

Abstract

The use of municipal wastewater in agriculture requires a careful monitoring of a range of hygiene parameters. Yearly hygienic impact assessments on soil and fruit were made between 2000 and 2006 in an olive (Olea europaea L.) grove established near a municipal wastewater treatment plant in Southern Italy (Ferrandina–Basilicata region, 408290 N, 168280 E). The experimental grove was managed in two plots. The first plot, non-tilled, was drip irrigated daily with reclaimed wastewater. The second plot was unirrigated (i.e. rainfed) and subject to conventional management for the region. Samples of wetted soil from different depths and of treated wastewater were analysed for Escherichia coli, enterococci, sulphitereducing Clostridium spores and Salmonella spp. Fruits were collected both from the canopy and from nets spread on the ground and analysed for faecal contamination. The average annual quantity of wastewater distributed was 293 mm. E. coli concentration in the wastewater varied considerably, being frequently above the stringent Italian mandatory limit of 10 CFU 100 mL 1 and also the WHO limit of 1000 MPN 100 mL 1. Salmonella was never detected in the wastewater, the soil or on the fruit samples. Slight increases in the other bacteria were observed in the wastewater-irrigated soil during the irrigation season and especially in the top 10 cm. Soil resilience and bacterial mortality/inactivation probably explains the seasonal decrease of soil bacteria content over the 7 years of the study. Because of their high resistance to disinfection treatments and to environmental conditions, the spores of the sulphitereducing bacterium Clostridium could be useful as an indicator of contamination in future guidelines that might be enacted for the use of wastewater in agriculture. No significant microbial contamination was recorded on fruit harvested directly from the canopy of the wastewater-irrigated trees. Contaminations on fruits sampled from the ground in the wastewater-irrigated plot were always low and usually similar to, or lower than those observed on drupes collected from the rainfed plot. In the rainfed plot, the recorded occasional contaminations were probably due to a number of factors, such as grazing of farm stock, presence of wild animals and surface water runoff from adjacent agricultural areas. This work confirms that, under suitable conditions, low-quality wastewater can be useful as an additional water resource for olive irrigation in water-scarce Mediterranean environments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/21835
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 142
  • ???jsp.display-item.citation.isi??? 123
social impact