Independent component analysis (ICA) is used to analyze the seismic signals produced by explosions of the Stromboli volcano. It has been experimentally proved that it is possible to extract the most significant components from seismometer recorders. In particular, the signal, eventually thought as generated by the source, is corresponding to the higher power spectrum, isolated by our analysis. Furthermore, the amplitude of the source signals has been found by using a simple trick and so overcoming, for this specific case, the classical problem of ICA regarding the amplitude loss of the separated signals.

Neural Networks for Blind-Source Separation of Stromboli Explosion Quakes

CIARAMELLA, Angelo;
2003

Abstract

Independent component analysis (ICA) is used to analyze the seismic signals produced by explosions of the Stromboli volcano. It has been experimentally proved that it is possible to extract the most significant components from seismometer recorders. In particular, the signal, eventually thought as generated by the source, is corresponding to the higher power spectrum, isolated by our analysis. Furthermore, the amplitude of the source signals has been found by using a simple trick and so overcoming, for this specific case, the classical problem of ICA regarding the amplitude loss of the separated signals.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/20372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 37
social impact