In the paper, the optimal thermoeconomic configuration of Solar Heating and Cooling systems (SHC) is investigated. In particular, a case study is presented, referred to an office building located in Naples (south Italy); for such building, three different SHC configurations were analyzed: the first one is based on the coupling of evacuated solar collectors with a single-stage LiBr-H 2O absorption chiller equipped with a water-to-water electrical heat pump, to be used in case of insufficient solar radiation; in the second case, a similar layout is considered, but the capacities of the absorption chiller and the solar field are smaller, since they are requested to balance just a fraction of the total cooling load of the building selected for the case study; finally, in the third case, the electric heat pump is replaced by an auxiliary gas-fired heater. A zero-dimensional transient simulation model, developed in TRNSYS, was used to analyze each layout from both thermodynamic and economic points of view. In particular, a cost model was developed in order to assess the owning and operating costs for each plant layout. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented in order to determine the set of the synthesis/design variables able to maximize the overall thermo-economic performance of the systems under analysis. For this purpose, two different objective functions were selected: the Pay-Back Period and the overall annual cost. Possible public funding, in terms of Capital Cost Contributions and/or feed-in tariff, were also considered. The results are presented on monthly and weekly basis, paying special attention to the energy and monetary flows in the optimal configurations. In particular, the thermoeconomic analysis and optimization showed that a good funding policy for the promotion of such technologies should combine a feed-in tariff with a slight Capital Cost Contribution, allowing to achieve satisfactory Pay-Back Periods.

Thermoeconomic optimization of Solar Heating and Cooling systems

VANOLI, Laura
2011

Abstract

In the paper, the optimal thermoeconomic configuration of Solar Heating and Cooling systems (SHC) is investigated. In particular, a case study is presented, referred to an office building located in Naples (south Italy); for such building, three different SHC configurations were analyzed: the first one is based on the coupling of evacuated solar collectors with a single-stage LiBr-H 2O absorption chiller equipped with a water-to-water electrical heat pump, to be used in case of insufficient solar radiation; in the second case, a similar layout is considered, but the capacities of the absorption chiller and the solar field are smaller, since they are requested to balance just a fraction of the total cooling load of the building selected for the case study; finally, in the third case, the electric heat pump is replaced by an auxiliary gas-fired heater. A zero-dimensional transient simulation model, developed in TRNSYS, was used to analyze each layout from both thermodynamic and economic points of view. In particular, a cost model was developed in order to assess the owning and operating costs for each plant layout. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented in order to determine the set of the synthesis/design variables able to maximize the overall thermo-economic performance of the systems under analysis. For this purpose, two different objective functions were selected: the Pay-Back Period and the overall annual cost. Possible public funding, in terms of Capital Cost Contributions and/or feed-in tariff, were also considered. The results are presented on monthly and weekly basis, paying special attention to the energy and monetary flows in the optimal configurations. In particular, the thermoeconomic analysis and optimization showed that a good funding policy for the promotion of such technologies should combine a feed-in tariff with a slight Capital Cost Contribution, allowing to achieve satisfactory Pay-Back Periods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/18527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 67
social impact