This paper focuses on the autonomous real-time relative navigation of LEO satellite formations. Specifically, a novel closed loop approach which integrates an Extended Kalman Filter with an Integer Least Squares estimator is presented in which double differenced code and carrier measurements on two frequencies are processed to get accurate relative positioning. Real-world GPS measurements from the GRACE mission are used for assessing the positioning algorithm performance. Results demonstrate that the approach is suitable for real-time relative positioning with a centimeter-level accuracy.

Carrier-based Differential GPS for autonomous relative navigation in LEO

2012

Abstract

This paper focuses on the autonomous real-time relative navigation of LEO satellite formations. Specifically, a novel closed loop approach which integrates an Extended Kalman Filter with an Integer Least Squares estimator is presented in which double differenced code and carrier measurements on two frequencies are processed to get accurate relative positioning. Real-world GPS measurements from the GRACE mission are used for assessing the positioning algorithm performance. Results demonstrate that the approach is suitable for real-time relative positioning with a centimeter-level accuracy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/17663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact