In this note we give some existence and nonexistence results of solutions to a problem of the type -div(vertical bar x vertical bar(-2 gamma) del u) = lambda/vertical bar x vertical bar(2(gamma+1)) u + u(p)/vertical bar x vertical bar(alpha) + f/vertical bar x vertical bar(2 gamma) in Omega u >= 0, u not equivalent to 0 in Omega (P-t,P-p) u = 0 on partial derivative Omega, where Omega is an open bounded subset of R-N containing the origin, the constants p, t. alpha, gamma, lambda satisfy suitable conditions and f not equivalent to 0 is a nonnegative, smooth bounded function on Omega. The results that will be given generalize some known results in Brezis et al. (2005) [1] and Dupaigne (2002) [2]. (C) 2012 Elsevier Inc. All rights reserved.

Semilinear elliptic equations with degenerate and singular weights related to Caffarelli-Kohn-Nirenberg inequalities

VOLZONE, Bruno
2012-01-01

Abstract

In this note we give some existence and nonexistence results of solutions to a problem of the type -div(vertical bar x vertical bar(-2 gamma) del u) = lambda/vertical bar x vertical bar(2(gamma+1)) u + u(p)/vertical bar x vertical bar(alpha) + f/vertical bar x vertical bar(2 gamma) in Omega u >= 0, u not equivalent to 0 in Omega (P-t,P-p) u = 0 on partial derivative Omega, where Omega is an open bounded subset of R-N containing the origin, the constants p, t. alpha, gamma, lambda satisfy suitable conditions and f not equivalent to 0 is a nonnegative, smooth bounded function on Omega. The results that will be given generalize some known results in Brezis et al. (2005) [1] and Dupaigne (2002) [2]. (C) 2012 Elsevier Inc. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/17247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact