In order to guarantee better conditions for competition, the nervous system has developed not only mechanisms controlling muscle effectors, but also retrograde systems that, starting from peripheral structures, may influence brain functions. Under such perspective, physical activity could play an important role in influencing cognitive brain functions including learning and memory. The results of epidemiological studies (cross-sectional, prospective and retrospective) support a positive relationship between cognition and physical activities. Recent metaanalysis confirmed a significant effect of exercise on cognitive functions. However, the biological mechanisms that underlie such beneficial effects are still to be completely elucidated. They include supramolecular mechanisms (e.g. neurogenesis, synaptogenesis, and angiogenesis) which, in turn, are controlled by molecular mechanisms, such as BDNF, IGF-1, hormone and second messengers.

Biological Mechanisms of Physical Activity in Preventing Cognitive Decline

SORRENTINO, Giuseppe
2010-01-01

Abstract

In order to guarantee better conditions for competition, the nervous system has developed not only mechanisms controlling muscle effectors, but also retrograde systems that, starting from peripheral structures, may influence brain functions. Under such perspective, physical activity could play an important role in influencing cognitive brain functions including learning and memory. The results of epidemiological studies (cross-sectional, prospective and retrospective) support a positive relationship between cognition and physical activities. Recent metaanalysis confirmed a significant effect of exercise on cognitive functions. However, the biological mechanisms that underlie such beneficial effects are still to be completely elucidated. They include supramolecular mechanisms (e.g. neurogenesis, synaptogenesis, and angiogenesis) which, in turn, are controlled by molecular mechanisms, such as BDNF, IGF-1, hormone and second messengers.
File in questo prodotto:
File Dimensione Formato  
Cell Mol Neurobiol.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 284.77 kB
Formato Adobe PDF
284.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11367/15646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 268
  • ???jsp.display-item.citation.isi??? 244
social impact