The present paper aims at improving the efficiency of the robustness analyses of flight control laws with respect to conventional techniques, especially when applied to vehicles following time-varying reference trajectories, such as in an atmospheric re-entry. A nonlinear robustness criterion is proposed, stemming from the Practical Stability framework, which allows dealing effectively with such cases. A novel approach is presented, which exploits the convexity of linear time varying systems, coupled to an approximate description of the original nonlinear system by a certain number of its time-varying linearizations. The suitability of the approximating systems is evaluated in a probabilistic fashion making use of the Unscented Transformation technique. The method effectiveness and potentials are ascertained by application to the robustness analysis of the longitudinal flight control laws of the Italian Aerospace Research Center (CIRA) experimental vehicle USV

A Hybrid Approach To Robustness Analyses Of Flight Control Laws In Re-Entry Applications

TANCREDI, Urbano
2008

Abstract

The present paper aims at improving the efficiency of the robustness analyses of flight control laws with respect to conventional techniques, especially when applied to vehicles following time-varying reference trajectories, such as in an atmospheric re-entry. A nonlinear robustness criterion is proposed, stemming from the Practical Stability framework, which allows dealing effectively with such cases. A novel approach is presented, which exploits the convexity of linear time varying systems, coupled to an approximate description of the original nonlinear system by a certain number of its time-varying linearizations. The suitability of the approximating systems is evaluated in a probabilistic fashion making use of the Unscented Transformation technique. The method effectiveness and potentials are ascertained by application to the robustness analysis of the longitudinal flight control laws of the Italian Aerospace Research Center (CIRA) experimental vehicle USV
9781615671601
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11367/15536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact